機械学習は数学者が新しいつながりを作るのに役立ちます-ScienceDaily

by REVOLUSYNAPSE
0 comment


数学者は初めて、人工知能と提携して、新しい数学的定理を提案および証明しました。 この作業は、オーストラリアのシドニー大学であるオックスフォード大学と、Googleの人工知能の姉妹会社であるDeepMindとのコラボレーションで行われました。

コンピューターは数学者のデータを生成するために長い間使用されてきましたが、興味深いパターンを特定するタスクは、主に数学者自身の直感に依存してきました。 しかし、今では、数学者が一生のうちに研究することを合理的に期待できるよりも多くのデータを生成することが可能になっています。 そこで機械学習が登場します。

本日発表された論文 自然は、DeepMindが結び目理論と表現論の分野でパターンと接続を識別するタスクをどのように設定したかを説明しています。 数学者の驚いたことに、新しいつながりが提案されました。 その後、数学者はこれらの関係を調べ、AIによって提案された推測を証明することができました。 これらの結果は、機械学習が数学的研究を補完し、問題についての直感を導くことができることを示唆しています。

オックスフォード大学の数学者は、機械学習によって特定されたパターンを使用して、結び目の代数的不変量と幾何学的不変量の間に驚くべき関係があることを発見し、この分野でまったく新しい定理を確立しました。 一方、シドニー大学は、AIによって確立された接続を使用して、40年間解決されていないカジュダン-ルスティック多項式についての古い推測を証明することに近づけました。

オックスフォード大学数学研究所のAndrasJuhasz教授は、この論文の共著者であり、次のように述べています。 しかし、推測はどこから来るのでしょうか?

「機械学習は、数学的な直感に導かれると、大量のデータが利用できる領域や、オブジェクトが大きすぎて古典的な方法で学習できない領域で、興味深く証明可能な推測を明らかにできる強力なフレームワークを提供することを実証しました。」

オックスフォード大学数学研究所のMarcLackeby教授は、次のように述べています。 ‘機械学習を使用して、数学のさまざまな分野間の新しい予期しないつながりを発見することは魅力的です。 オックスフォードとシドニーでDeepMindと共同で行った作業は、機械学習が数学研究において真に有用なツールになり得ることを示していると思います。

シドニー大学の数学教授であり、シドニー数学研究所の所長であり共著者であるジョーディー・ウィリアムソン教授は、次のように述べています。 この作品は、私のような純粋数学者にとってその有用性を示した最初の作品の1つです。

「直感は私たちに長い道のりをとることができますが、AIは、人間の心が必ずしも簡単に見つけることができないかもしれないつながりを見つけるのに役立ちます。」

ストーリーソース:

材料 によって提供された オックスフォード大学注:コンテンツは、スタイルと長さで編集できます。



Source link

Leave a Comment